Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.

Identifieur interne : 000827 ( Main/Exploration ); précédent : 000826; suivant : 000828

Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.

Auteurs : Jiro Sakai [États-Unis] ; Jingyu Li ; Kulandayan K. Subramanian ; Subhanjan Mondal ; Besnik Bajrami ; Hidenori Hattori ; Yonghui Jia ; Bryan C. Dickinson ; Jia Zhong ; Keqiang Ye ; Christopher J. Chang ; Ye-Shih Ho ; Jun Zhou ; Hongbo R. Luo

Source :

RBID : pubmed:23159440

Descripteurs français

English descriptors

Abstract

The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, but the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils.

DOI: 10.1016/j.immuni.2012.08.017
PubMed: 23159440
PubMed Central: PMC3525814


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.</title>
<author>
<name sortKey="Sakai, Jiro" sort="Sakai, Jiro" uniqKey="Sakai J" first="Jiro" last="Sakai">Jiro Sakai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Harvard Medical School and Department of Lab Medicine, Children's Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Harvard Medical School and Department of Lab Medicine, Children's Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingyu" sort="Li, Jingyu" uniqKey="Li J" first="Jingyu" last="Li">Jingyu Li</name>
</author>
<author>
<name sortKey="Subramanian, Kulandayan K" sort="Subramanian, Kulandayan K" uniqKey="Subramanian K" first="Kulandayan K" last="Subramanian">Kulandayan K. Subramanian</name>
</author>
<author>
<name sortKey="Mondal, Subhanjan" sort="Mondal, Subhanjan" uniqKey="Mondal S" first="Subhanjan" last="Mondal">Subhanjan Mondal</name>
</author>
<author>
<name sortKey="Bajrami, Besnik" sort="Bajrami, Besnik" uniqKey="Bajrami B" first="Besnik" last="Bajrami">Besnik Bajrami</name>
</author>
<author>
<name sortKey="Hattori, Hidenori" sort="Hattori, Hidenori" uniqKey="Hattori H" first="Hidenori" last="Hattori">Hidenori Hattori</name>
</author>
<author>
<name sortKey="Jia, Yonghui" sort="Jia, Yonghui" uniqKey="Jia Y" first="Yonghui" last="Jia">Yonghui Jia</name>
</author>
<author>
<name sortKey="Dickinson, Bryan C" sort="Dickinson, Bryan C" uniqKey="Dickinson B" first="Bryan C" last="Dickinson">Bryan C. Dickinson</name>
</author>
<author>
<name sortKey="Zhong, Jia" sort="Zhong, Jia" uniqKey="Zhong J" first="Jia" last="Zhong">Jia Zhong</name>
</author>
<author>
<name sortKey="Ye, Keqiang" sort="Ye, Keqiang" uniqKey="Ye K" first="Keqiang" last="Ye">Keqiang Ye</name>
</author>
<author>
<name sortKey="Chang, Christopher J" sort="Chang, Christopher J" uniqKey="Chang C" first="Christopher J" last="Chang">Christopher J. Chang</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Zhou, Jun" sort="Zhou, Jun" uniqKey="Zhou J" first="Jun" last="Zhou">Jun Zhou</name>
</author>
<author>
<name sortKey="Luo, Hongbo R" sort="Luo, Hongbo R" uniqKey="Luo H" first="Hongbo R" last="Luo">Hongbo R. Luo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23159440</idno>
<idno type="pmid">23159440</idno>
<idno type="doi">10.1016/j.immuni.2012.08.017</idno>
<idno type="pmc">PMC3525814</idno>
<idno type="wicri:Area/Main/Corpus">000790</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000790</idno>
<idno type="wicri:Area/Main/Curation">000790</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000790</idno>
<idno type="wicri:Area/Main/Exploration">000790</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.</title>
<author>
<name sortKey="Sakai, Jiro" sort="Sakai, Jiro" uniqKey="Sakai J" first="Jiro" last="Sakai">Jiro Sakai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Harvard Medical School and Department of Lab Medicine, Children's Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Harvard Medical School and Department of Lab Medicine, Children's Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Jingyu" sort="Li, Jingyu" uniqKey="Li J" first="Jingyu" last="Li">Jingyu Li</name>
</author>
<author>
<name sortKey="Subramanian, Kulandayan K" sort="Subramanian, Kulandayan K" uniqKey="Subramanian K" first="Kulandayan K" last="Subramanian">Kulandayan K. Subramanian</name>
</author>
<author>
<name sortKey="Mondal, Subhanjan" sort="Mondal, Subhanjan" uniqKey="Mondal S" first="Subhanjan" last="Mondal">Subhanjan Mondal</name>
</author>
<author>
<name sortKey="Bajrami, Besnik" sort="Bajrami, Besnik" uniqKey="Bajrami B" first="Besnik" last="Bajrami">Besnik Bajrami</name>
</author>
<author>
<name sortKey="Hattori, Hidenori" sort="Hattori, Hidenori" uniqKey="Hattori H" first="Hidenori" last="Hattori">Hidenori Hattori</name>
</author>
<author>
<name sortKey="Jia, Yonghui" sort="Jia, Yonghui" uniqKey="Jia Y" first="Yonghui" last="Jia">Yonghui Jia</name>
</author>
<author>
<name sortKey="Dickinson, Bryan C" sort="Dickinson, Bryan C" uniqKey="Dickinson B" first="Bryan C" last="Dickinson">Bryan C. Dickinson</name>
</author>
<author>
<name sortKey="Zhong, Jia" sort="Zhong, Jia" uniqKey="Zhong J" first="Jia" last="Zhong">Jia Zhong</name>
</author>
<author>
<name sortKey="Ye, Keqiang" sort="Ye, Keqiang" uniqKey="Ye K" first="Keqiang" last="Ye">Keqiang Ye</name>
</author>
<author>
<name sortKey="Chang, Christopher J" sort="Chang, Christopher J" uniqKey="Chang C" first="Christopher J" last="Chang">Christopher J. Chang</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Zhou, Jun" sort="Zhou, Jun" uniqKey="Zhou J" first="Jun" last="Zhou">Jun Zhou</name>
</author>
<author>
<name sortKey="Luo, Hongbo R" sort="Luo, Hongbo R" uniqKey="Luo H" first="Hongbo R" last="Luo">Hongbo R. Luo</name>
</author>
</analytic>
<series>
<title level="j">Immunity</title>
<idno type="eISSN">1097-4180</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Bacterial Infections (genetics)</term>
<term>Bacterial Infections (immunology)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Chemotaxis (immunology)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (immunology)</term>
<term>Humans (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
<term>NADPH Oxidases (metabolism)</term>
<term>Neutrophils (immunology)</term>
<term>Neutrophils (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Pseudopodia (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Chimiotaxie (immunologie)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (immunologie)</term>
<term>Granulocytes neutrophiles (immunologie)</term>
<term>Granulocytes neutrophiles (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Infections bactériennes (génétique)</term>
<term>Infections bactériennes (immunologie)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>NADPH oxidase (métabolisme)</term>
<term>Pseudopodes (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Souris knockout (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>NADPH Oxidases</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacterial Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Infections bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Chimiotaxie</term>
<term>Glutarédoxines</term>
<term>Granulocytes neutrophiles</term>
<term>Infections bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Bacterial Infections</term>
<term>Chemotaxis</term>
<term>Neutrophils</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neutrophils</term>
<term>Pseudopodia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Espèces réactives de l'oxygène</term>
<term>Granulocytes neutrophiles</term>
<term>NADPH oxidase</term>
<term>Pseudopodes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Knockout</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Souris</term>
<term>Souris knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, but the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23159440</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>02</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-4180</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>37</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>Immunity</Title>
<ISOAbbreviation>Immunity</ISOAbbreviation>
</Journal>
<ArticleTitle>Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.</ArticleTitle>
<Pagination>
<MedlinePgn>1037-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.immuni.2012.08.017</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1074-7613(12)00455-4</ELocationID>
<Abstract>
<AbstractText>The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, but the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sakai</LastName>
<ForeName>Jiro</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Harvard Medical School and Department of Lab Medicine, Children's Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jingyu</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Subramanian</LastName>
<ForeName>Kulandayan K</ForeName>
<Initials>KK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mondal</LastName>
<ForeName>Subhanjan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bajrami</LastName>
<ForeName>Besnik</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hattori</LastName>
<ForeName>Hidenori</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Yonghui</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dickinson</LastName>
<ForeName>Bryan C</ForeName>
<Initials>BC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Jia</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Keqiang</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Shih</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Hongbo R</ForeName>
<Initials>HR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM 79465</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM076084</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL085100</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Howard Hughes Medical Institute</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM076084</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL095489</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM079465</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL085100</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Immunity</MedlineTA>
<NlmUniqueID>9432918</NlmUniqueID>
<ISSNLinking>1074-7613</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002633" MajorTopicYN="N">Chemotaxis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009504" MajorTopicYN="N">Neutrophils</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011554" MajorTopicYN="N">Pseudopodia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23159440</ArticleId>
<ArticleId IdType="pii">S1074-7613(12)00455-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.immuni.2012.08.017</ArticleId>
<ArticleId IdType="pmc">PMC3525814</ArticleId>
<ArticleId IdType="mid">NIHMS414883</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Aug 25;275(34):26556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10854441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 May 3;109(3):383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Jan 1;34(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12498976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Feb 21;112(4):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12600310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1995 Feb;9(2):202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7719350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Jul 16;455(1-2):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):999-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2005 Jun;39(6):573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16036334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hematology Am Soc Hematol Educ Program. 2005;:89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16304364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 May 1;109(9):4028-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Jul 6;370(2):331-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17521670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Jul 15;110(2):640-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17420285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Oct 15;43(8):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17854705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2007;8:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Jul 15;183(2):1032-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:335-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19691428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20142487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2010 Aug;299(2):L192-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15681-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20724658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2010;26:315-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Feb;7(2):106-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2011 Aug;7(8):504-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21769097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Aug;12(8):752-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bajrami, Besnik" sort="Bajrami, Besnik" uniqKey="Bajrami B" first="Besnik" last="Bajrami">Besnik Bajrami</name>
<name sortKey="Chang, Christopher J" sort="Chang, Christopher J" uniqKey="Chang C" first="Christopher J" last="Chang">Christopher J. Chang</name>
<name sortKey="Dickinson, Bryan C" sort="Dickinson, Bryan C" uniqKey="Dickinson B" first="Bryan C" last="Dickinson">Bryan C. Dickinson</name>
<name sortKey="Hattori, Hidenori" sort="Hattori, Hidenori" uniqKey="Hattori H" first="Hidenori" last="Hattori">Hidenori Hattori</name>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<name sortKey="Jia, Yonghui" sort="Jia, Yonghui" uniqKey="Jia Y" first="Yonghui" last="Jia">Yonghui Jia</name>
<name sortKey="Li, Jingyu" sort="Li, Jingyu" uniqKey="Li J" first="Jingyu" last="Li">Jingyu Li</name>
<name sortKey="Luo, Hongbo R" sort="Luo, Hongbo R" uniqKey="Luo H" first="Hongbo R" last="Luo">Hongbo R. Luo</name>
<name sortKey="Mondal, Subhanjan" sort="Mondal, Subhanjan" uniqKey="Mondal S" first="Subhanjan" last="Mondal">Subhanjan Mondal</name>
<name sortKey="Subramanian, Kulandayan K" sort="Subramanian, Kulandayan K" uniqKey="Subramanian K" first="Kulandayan K" last="Subramanian">Kulandayan K. Subramanian</name>
<name sortKey="Ye, Keqiang" sort="Ye, Keqiang" uniqKey="Ye K" first="Keqiang" last="Ye">Keqiang Ye</name>
<name sortKey="Zhong, Jia" sort="Zhong, Jia" uniqKey="Zhong J" first="Jia" last="Zhong">Jia Zhong</name>
<name sortKey="Zhou, Jun" sort="Zhou, Jun" uniqKey="Zhou J" first="Jun" last="Zhou">Jun Zhou</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Sakai, Jiro" sort="Sakai, Jiro" uniqKey="Sakai J" first="Jiro" last="Sakai">Jiro Sakai</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000827 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000827 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23159440
   |texte=   Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23159440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020